Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We showcase a fully on-chip CMOS-fabricated silicon photonic integrated circuit employing a bidirectionally pumped microring and polarization splitter-rotators tailored for the generation of broadband (>9 THz), high-fidelity (90–98%) polarization-entangled photons. Spanning the optical C+L-band and producing over 116 frequency-bin pairs on a 38.4-GHz-spaced grid, this source is ideal for flex-grid wavelength-multiplexed entanglement distribution in multiuser networks.more » « less
-
Discrete frequency modes, or bins, present a blend of opportunities and challenges for photonic quantum information processing. Frequency-bin-encoded photons are readily generated by integrated quantum light sources, naturally high-dimensional, stable in optical fiber, and massively parallelizable in a single spatial mode. Yet quantum operations on frequency-bin states require coherent and controllable multifrequency interference, making them significantly more challenging to manipulate than more traditional spatial degrees of freedom. In this mini-review, we describe recent developments that have transformed these challenges and propelled frequency bins forward. Focusing on sources, manipulation schemes, and detection approaches, we introduce the basics of frequency-bin encoding, summarize the state of the art, and speculate on the field’s next phases. Given the combined progress in integrated photonics, high-fidelity quantum gates, and proof-of-principle demonstrations, frequency-bin quantum information is poised to emerge from the lab and leave its mark on practical quantum information processing—particularly in networking where frequency bins offer unique tools for multiplexing, interconnects, and high-dimensional communications.more » « less
-
We generate ultrabroadband photon pairs entangled in both polarization and frequency bins through an all-waveguided Sagnac source covering the entire optical C- and L-bands (1530–1625 nm). We perform comprehensive characterization of high-fidelity states in multiple dense wavelength-division multiplexed channels, achieving full tomography of effective four-qubit systems. Additionally, leveraging the inherent high dimensionality of frequency encoding and our electro-optic measurement approach, we demonstrate the scalability of our system to higher dimensions, reconstructing states in a 36-dimensional Hilbert space consisting of two polarization qubits and two frequency-bin qutrits. Our findings hold potential significance for quantum networking, particularly dense coding and entanglement distillation in wavelength-multiplexed quantum networks.more » « less
-
Spectral and temporal mode matching are required for the efficient interaction of photons and quantum memories. In our previous work [Opt. Lett.45,5688(2020).10.1364/OL.404891], we proposed a new route to spectrally compress broadband photons to achieve spectral mode matching with narrowband memories, using a linear, time-variant optical cavity based on rapid switching of input coupling. In this work, we extend our approach to attain temporal mode matching as well by exploiting the time variation of output coupling of the cavity. We numerically analyze the mode matching and loss performance of our time-varying cavity and present a possible implementation in integrated photonics.more » « less
-
Precise knowledge of position and timing information is critical to support elementary protocols such as entanglement swapping on quantum networks. While approaches have been devised to use quantum light for such metrology, they largely rely on time-of-flight (ToF) measurements with single-photon detectors and, therefore, are limited to picosecond-scale resolution owing to detector jitter. In this work, we demonstrate an approach to distributed sensing that leverages phase modulation to map changes in the spectral phase to coincidence probability, thereby overcoming the limits imposed by single-photon detection. By extracting information about the joint biphoton phase, we measure a generalized delay—the difference in signal–idler arrival, relative to local radio frequency (RF) phase modulation. For nonlocal ranging measurements, we achieve ( ) precision of and for measurements of the relative RF phase, ( ) precision of . We complement this fine timing information with ToF data from single-photon time-tagging to demonstrate absolute measurement of time delay. By relying on off-the-shelf telecommunications equipment and standard quantum resources, this approach has the potential to reduce overhead in practical quantum networks.more » « less
-
The discrete Fourier transform (DFT) is of fundamental interest in photonic quantum information, yet the ability to scale it to high dimensions depends heavily on the physical encoding, with practical recipes lacking in emerging platforms such as frequency bins. In this article, we show thatd-point frequency-bin DFTs can be realized with a fixed three-component quantum frequency processor (QFP), simply by adding to the electro-optic modulation signals one radio-frequency harmonic per each incremental increase ind. We verify gate fidelity and success probability up tod = 10 in numerical simulations, and experimentally implement the solution ford = 3, utilizing measurements with parallel DFTs to quantify entanglement and perform tomography of multiple two-photon frequency-bin states. Our results furnish new opportunities for high-dimensional frequency-bin protocols in quantum communications and networking.more » « less
-
We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of for discriminating between the and frequency-bin Bell states. Our approach resolves the tension between wavelength-multiplexed state transport and high-fidelity Bell state measurements, which typically require spectral indistinguishability.more » « less
-
Spectral compression will be needed for efficient interfacing of broadband photons with narrowband quantum memories for applications in quantum information and networking. In this Letter, we propose spectral compression via a time-varying, linear optical cavity. Unlike other recent works on time-varying cavities based on modulation of the intracavity phase, our spectral compression concept is based on rapid switching of coupling into the cavity. We analyze spectral compression performance metrics as a function of mirror reflectivity, cavity loss, and switching speed and discuss potential implementation in integrated photonics.more » « less
-
Flexible grid wavelength division multiplexing is a powerful tool in lightwave communications to maximize spectral efficiency. In the emerging field of quantum networking, the need for effective resource provisioning is particularly acute, given the generally lower power levels, higher sensitivity to loss, and inapplicability of optical detection and retransmission. In this letter, we leverage flex grid technology to demonstrate reconfigurable distribution of quantum entanglement in a four-user tabletop network. By adaptively partitioning bandwidth with a single wavelength-selective switch, we successfully equalize two-party coincidence rates that initially differ by over two orders of magnitude. Our scalable approach introduces loss that is fixed with the number of users, offering a practical path for the establishment and management of quality-of-service guarantees in large quantum networks.more » « less
An official website of the United States government
